Cos Фи Справочник
Коэффициент мощности (cos φ, косинус фи ), Полная (кажущаяся), активная и реактивная мощность электродвигателя=электромотора и не только его. Коэффициент мощности для трехфазного электродвигателя.
Jan 18, 2018 - Содержание • • • • Потребление тока Номинальная мощность (кВт, Pn) двигателя указывает его номинальную эквивалентную. Коэффициент мощности необходимо учитывать при проектировании электросетей.
На шильдиках многих электромоторов (электродвигателей и др. Устройств) указывают активную мощность в Вт и cosφ / или λ /или PF. Что тут к чему см.
Подразумеваем,что переменное напряжение в сети синусоидальное - обычное, хотя все рассуждения ниже верны и для всех гармоник по отдельности других периодических напряжений. Полная, или кажущаяся мощность S (apparent power) измеряется в вольт-амперах (ВА или VA) и определяется произведением переменных напряжения и тока системы. Удобно считать, что полная мощность в цепи переменного тока выражается таким, что активная мощность является его действительной частью, реактивная мощность — мнимой. угол φ -это угол между фазой напряжения и фазой тока, называемый еще сдвигом фаз, при этом, если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает его, то отрицательным. величина sin φ для значений φ от 0 до плюс 90° является положительной величиной. Величина sin φ для значений φ от 0 до -90° является отрицательной величиной. если sin φ0, то нагрузка имеет активно-индуктивный характер (электромоторы, трансформаторы, катушки.) - ток отстает от напряжения.
если sin φ.
Коэффициент мощности, или косинус фи в электротехнике – это отношение активной мощности P (Вт) к полной S (ВА): cos(φ) = P/S. Он указывает на то, насколько эффективно данное устройство использует электрическую энергию. Идеальная нагрузка Для объяснения физического значения коэффициента мощности рассмотрим пример расчета косинуса фи для различных потребителей. Предположим, в линию переменного тока подключен идеальный конденсатор. Так как переменное напряжение непрерывно меняет свою полярность, конденсатор половину времени будет заряжаться и половину – возвращать сохраненную энергию обратно к источнику.
В результате в линии будут постоянно циркулировать электроны, но чистой передачи энергии не будет. Итак, в проводнике будет и напряжение, и ток, но активной мощности не будет. Произведение U на I называется мнимой мощностью, потому что это просто математическое число, которое не имеет реального физического смысла.
В этом примере коэффициент мощности равен 0. Аналогично расчет косинуса фи для единственного идеального индуктора приведет к cos(φ) = 0, за исключением того, что его ток будет отставать от напряжения. Теперь рассмотрим противоположный крайний случай резистивной нагрузки. В этом случае вся электрическая энергия, поступающая к ней, потребляется и преобразуется в другие виды энергии, такие как тепло. Это пример того, когда косинус фи в электрике равен 1. Все реальные схемы работают где-то в промежутке между этими двумя крайностями. Векторная математика При анализе цепей синусоидальный сигнал можно представить комплексным числом (называемым вектором), модуль которого пропорционален величине сигнала, а угол равен его фазе относительно некоторой ссылки.
В линейных схемах коэффициент мощности равен косинусу фи. В электротехнике это угол между фазами напряжения и тока. Эти векторы и соответствующие им активные и реактивные составляющие мощности могут быть представлены в виде прямоугольного треугольника. Кременчугское водохранилище карта глубин.
Конечно, напряжение – это электрическое поле, а ток – поток электронов, поэтому так называемый угол между их векторами является не более чем математической величиной. Условились считать, что индуктивная нагрузка создает положительную Q (измеряемую в вольт-амперах-реактивных, ВАр).
Это связано с так называемым «запаздывающим» коэффициентом, поскольку ток отстает от напряжения. Аналогично емкостная нагрузка создает отрицательную Q и «опережающий» λ. Нелинейные искажения Индукторы и конденсаторы – не единственные причины низкого косинуса фи.
В электротехнике это обычное явление, когда (за исключением идеальных R, L и C) электрические цепи нелинейны, особенно из-за наличия таких активных компонентов, как выпрямители. В таких схемах ток I (t) непропорционален напряжению V (t), даже если последнее является чистой синусоидой, поскольку I (t) будет периодическим, но не синусоидальным. Согласно теореме Фурье, любая периодическая функция представляет собой сумму синусоидальных волн с частотами, кратными исходной. Эти волны называются гармониками. Можно показать, что они не способствуют передаче чистой энергии, а увеличивают ток и уменьшают коэффициент λ. Когда напряжение синусоидальное, только первая гармоника I 1 обеспечит реальную мощность.
Однако ее величина зависит от фазового сдвига между током и напряжением. Эти факты отражены в общей формуле расчета коэффициента мощности: λ = (I 1/I) × cos(φ). Первый член в этом уравнении представляет собой искажения, а второй – смещение. Активная и пассивная компенсация Коррекция косинуса фи в электротехнике – это любая техника увеличения коэффициента мощности до 1. В общем случае cos(φ) может варьироваться от 0 до 1.
Чем выше коэффициент мощности, тем эффективнее используется электричество. Причинами несовершенства являются искажения и фазовый сдвиг между гармониками напряжения и тока той же частоты. Поэтому существуют две основные категории методов коррекции коэффициента мощности. Гармонические искажения вызваны нелинейными компонентами, такими как мост выпрямителя в источниках питания постоянного тока, который подключается непосредственно к большому накопительному конденсатору. Их можно скорректировать на этапе проектирования источника питания путем введения различных пассивных или активных схем компенсации. Основным источником фазового сдвига U-I являются промышленные асинхронные двигатели, которые с точки зрения схемы имеют индуктивную нагрузку.
Косинус Фи Электродвигателя
Косинус фи двигателя (который на холостом ходу падает до 0,1) можно увеличить, добавив внешние компенсирующие конденсаторы. При этом их необходимо установить как можно ближе к нагрузке, чтобы избежать циркуляции реактивной мощности до места их размещения. Активная компенсация реактивной мощности использует активные электронные схемы с обратной связью, которые сглаживают форму кривой выпрямленного тока. Нелинейные устройства генерируют гармонические колебания с частотой ƒ=1/(2π√LC). Если она совпадает с одной из гармоник, то будет усиливаться, что может привести к различным последствиям, в т. Во избежание этого, последовательно с компенсирующим конденсатором подсоединяют небольшой индуктор, что образует т.
Шунтирующий фильтр подавления гармоник. Зачем мощности? Существует несколько причин для корректировки косинуса фи для различных потребителей.
Известно, что когда λ. В быту низкий λ уменьшает пропускную способность проводников и автоматических выключателей. Помимо этого, вопреки распространенному заблуждению лиц, не знакомых с основами электротехники, домовладельцы и потребители от коррекции коэффициента мощности выгоды не получают. Мнимая польза Производится ряд «приборов», предлагаемых через Интернет, продавцы которых утверждают, что они сократят счета за электричество, корректируя коэффициент мощности в домашней электросети.
Их рекламируют под разными названиями. В связи с этим потребители часто спрашивают, уменьшит ли компенсация реактивной мощности счета за электричество? Действительно, коррекция λ снижает потребление полного тока и соответственно уменьшает Q.
Однако в настоящее время в жилых домах реактивная мощность не тарифицируется. Знание основ электротехники позволяет избежать участи жертв такого обмана.
Что Такое Косинус Фи
Нужно ли компенсировать Q? Потребители платят исключительно за активную энергию, т. За киловатт-часы, и это единственное, что могут измерить старомодные ротационные счетчики. Технически снижение реактивной составляющей немного снизит потери в кабелях между счетчиком коммунальных услуг и точкой соединения компенсатора мнимой мощности, но этот эффект пренебрежительно незначителен. По большому счету, улучшение коэффициента λ и снижение мнимого тока практически не влияет на показания счетчика. Теоретически ситуация изменится, если внутренние тарифы будут включать плату за киловольт-ампер-часы, измеренные современными счетчиками, однако это маловероятно. Конечно, электрическим компаниям выгодно снижать Q, но сначала нужно определить показатели домашней нагрузки, чтобы не принести больше вреда, чем пользы.
Нужны ли встроенные компенсаторы? По тем же соображениям нет смысла покупать технику со встроенной коррекцией коэффициента мощности. Фактически активная система компенсации даже увеличивает расходы из-за добавления стадии преобразования. Таким образом, при прочих равных условиях, потребление электроэнергии может увеличиться. Однако коррекция коэффициента мощности в электронике дает определенные технические выгоды. В частности, это увеличивает количество ватт, которые можно извлечь из розетки.
Косинус Фи Формула
Другим преимуществом является то, что приборы могут работать при любом напряжении (115 или 230 В). Но стоит ли это дополнительной платы?